Silencing of insulin-like growth factor-binding protein-2 in human glioblastoma cells reduces both invasiveness and expression of progression-associated gene CD24.
نویسندگان
چکیده
Glioblastoma multiforme (GBM) is a malignant brain tumor characterized by rapid growth and extensive invasiveness. Overexpression of insulin-like growth factor-binding protein-2 (IGFBP-2) has been reported in GBM. However, it remains to be determined how IGFBP-2 is involved in the progression of GBM. We utilized short hairpin-RNA (shRNA) expression retroviral vectors to inactivate the IGFBP-2 gene permanently in two human GBM cell lines, U251 and YKG-1. The stable knockdown of IGFBP-2 resulted in decreased invasiveness, decreased saturation density of the cells in vitro, and decreased tumorigenicity in nude mice. Transcriptional profiling of both lines revealed several genes that were significantly down-regulated by inactivation of IGFBP-2. One such gene was CD24, which has been implicated in progression of various cancers. Indeed, CD24 was expressed in most GBM cases and the inactivation of CD24 in GBM cells suppressed cellular invasiveness, as was the case for IGFBP-2. Forced overexpression of CD24 led to increased invasiveness of both IGFBP-2-inactivated GBM cell lines and also A172, a human GBM cell line with low endogenous CD24. Further supporting the inter-relationship between IGFBP-2 and CD24, knockdown of IGFBP-2 suppressed the CD24 promoter activity. Moreover, both CD24 promoter activity and in vitro invasiveness were restored in knockdown cells by transfection with an IGFBP-2 expression plasmid. These results indicate that CD24 is modulated by IGFBP-2 and contributes to IGFBP-2-enhanced invasiveness of GBM cells.
منابع مشابه
Silencing of insulin-like growth factor binding protein-2 (IGFBP-2) in human glioblastoma cells reduces both invasiveness and expression of progression-associated gene CD24
Glioblastoma multiforme (GBM) is a malignant brain tumor characterized by rapid growth and extensive invasiveness. Overexpression of insulin-like growth factor binding protein-2 (IGFBP-2) has been reported in GBM. However, it remains to be determined how IGFBP-2 is involved in the progression of GBM. We utilized short hairpin-RNA (shRNA) expression retroviral vectors to inactivate the IGFBP-2 g...
متن کاملProduction and functional characterization of human insulin-like growth factor 1
Insulin-like growth factor 1 (IGF-1) is a polypeptide hormone produced mainly by the liver in response to the endocrine growth hormone (GH) stimulus. This protein is involved in a wide range of cellular functions, including cellular differentiation, transformation, apoptosis suppression, migration and cell-cycle progression and other metabolic processes. In the current study, human heart cDNA w...
متن کاملOptimization and Construction of Human Insulin-like Growth Factor 1 Gene related to human health
Background and aims: Laron syndrome is a disease that treated by Insulin-like Growth Factor 1 (IGF-1). This protein is a single chain and has three disulfide bonds. People with Laron syndrome have low rates of cancer and diabetes, although they appear to be at increased risk of casual death due to their stature. IGF-1 is synthesized by many tissues and is secreted from liver as an endocrine hor...
متن کاملP157: Periostin Recruits Tumor Associated Macrophages in Glioblastoma Multiform
Glioblastoma multiform (GBM) is the most common and lethal type of primary brain tumors with high rates of morbidity and mortality. Treatment options are limited and ineffective in most of the cases. Epidemiological studies have shown a link between inflammation and glioma genesis. In addition, at the molecular level, pro-inflammatory cytokines released from activated microglia can increa...
متن کاملUtility of P19 Gene-Silencing Suppressor for High Level Expression of Recombinant Human Therapeutic Proteins in Plant Cells
Background: The potential of plants, as a safe and eukaryotic system, is considered in the production of recombinant therapeutic human protein today; but the expression level of heterologous proteins is limited by the post-transcriptional gene silencing (PTGS) response in this new technology. The use of viral suppressors of gene silencing can prevent PTGS and improve transient expression level ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of biological chemistry
دوره 282 25 شماره
صفحات -
تاریخ انتشار 2007